VAST/90

Fortran 90 Compiler

User’s Guide
Version 3.2

Pacific-Sierra Resear ch

Document revision record

Document Number VV90B.

Edition Date Description

1.0 1/92 Initial release.

11 3/92 Minor corrections, INCLUDEs to MODULEs.

1.2 7/92 Added switches, more invocation examples.

2.0 1/93 Derived typesto/from VAX-compatible structures,

documentation of error detection and trace tools,
Changed organization of document.

21 7/93 Minor improvements and corrections.
2.2 3/94 Minor improvements and corrections.
3.0 5/95 Major revison. Change document organization.

31 10/95 Minor reformatting.
3.2 2/98 Minor additions.

Copyright (C) 1992,1998, Pacific-Sierra Research Corporation. No unauthorized use or duplication is
permitted. All rights reserved.

VAST/f90 User's Guide Document revision record

Preface

Thisisaguideto the use of VAST/f90. VAST/f90 is a compiling system for Fortran 90. This manual is
designed to give Fortran programmers an understanding of VAST/f90’ s capabilities and effective use.

Fortran 90 is the new Fortran language standard (1SO and ANSI). This User's Guide does not contain
language reference information; for more information about Fortran 90, please refer to one of the many
books that have been published on this subject.

An excdllent source of information on Fortran 90 is the Fortran 90 Handbook (McGraw-Hill, 1992) by
Adams, Brainerd, Martin, Smith, and Wagener. This book gives more background and examples than
the standard, and till documents the compl ete language.

Special notices

VAST isaregistered trademark of Pacific-Sierra Research Corporation.

VAX isatrademark of Digital Equipment Corporation.

VAST/f90 User's Guide Preface

Table of contents

DOCUMENT REVISION RECORD ...ttt i
[S i
= o) I N 1 1 [0 = S i
T ABLIE OF CONT EN T S .iiiiiiiitiitittteeeeessessssssessnns iv
L. INTRODUCTION ...t e e e e s e e e s e e e s s s snaanan 1
COMPILING FORTRAN G0 ... iiiiiiiiiii ittt ettt e e e e s e e e b b s e e e s s e e bbb s e e s s s e e e bbb e eessess bbb s eessseesbbaaaeeaanes 1
FURTHER INFORMATION L1ttuuiiiiiiitttttsseeesseetsbsssssesssesssaassessssassssaaseasseessbaaa s essssesssbaasssessesssbaansseesssesssannnsns 1
2. INVOKING VAST/FQO..... e 2
FOO COMMAND LINE ...ttttttuuiieesiitsttssaseesssesssssssesssseessssssseesssessssssssseesseesssssnteeessessssseeesteesssinieeesrsesssn 2
VOO COMMAND LINE ...eitttuuuiieetietsstsiiseessessssssssessssesssssssssassesssssnssessssessssssssseessessssssnseesteessssnnseeesressssins 2
V7 O TN Y= =S T 3
e T = S QI = N T LT 4
B FO0 T O R 5
(@2 1T o) NSRRI 5
SYSTEM-DEPENDENT OPTIMIZATIONitttttuuuiiiietittstsuaieeessesstsssieesstessssssstesssessssssteesseesstseessteesieeann 6
D] =110 LT [RRTR 7
OVERVIEW OF FORTRAN 0....cctittiiiiiiiiiieiiiie ettt e e e s e e e b s e e e s e e e bbb s e e s e s e e e bbb s eessesa bbb s eesssensbbaaneeaanes 7
Lt = o1 = N TR 8
2, ARRAY SY N T A X coieittiitietteeeseeseessssesssnns 9
L N S TP 9

AATTAY EXPIESSIONS. ...ttt eteeeteeatee e ettt e sabe e s bt e abeeeaaeeesabeaaabeeabe e e aaee e aabe e ambe e e abe e e ahee e ambeeambeeebeeeabbeesabeesnreeaanes 9

L0001 {0100 1’1 o 1 YU U OPRURRPRI 9

MASKEA OPEI GLIONS......eeeeieeieiee ettt ettt ettt e bt ebee e shte e sabe e sabe e e be e e abeeesabeesmbeesabeeebeeeabseesnteesarean 10

INEFINSIC FUNCHIONS ... 10

Fplof g o =T (o [oo R TUSUPUPRTOURRUSRPRI 11

ATTAY CONSITUCTONS ...ttt ettt e ettee ettt e ettt e e sttt e e e abe e e e e bb e e e e aabee e e e ab e e e e aabee e e e ambe e e e s nbe e e e aabbeeesanneeaeanrnaans 11
[0 N TR 12
Y 1= T =S ST 13
5. FORTRAN QO EXAMPLES.......co oo 16
(O I = N N D = T TR 16
CA SE S .. 16
(D] RV = D IR = =5 TR 16
ALLOCATE/DEALLOCATE ... snan 17
AAUTOMATIC A RRAY S .. iittttti i i ittt ettt s e ee st eat bt eees st e s b bt seeas e e st b b s esesse s s bbbt eeesseesabbaa s eessseesbbaansesssernsses 17
TR NS Lol = U N[0 W10 N TN 18
1Y 5 10 0 18
L O LAV I] ST 19
ATTRIBUTE DECLARATIONS ... itiiitttttisiesstessttssessssessssaasseesstesssaaatesssessssssstsssseesssssttesssesssssnnsseesseessses 19

VAST/f90 User's Guide Table of contents iv

USER-DEFINED OPERATORS. .. .cittttttttiieeetiesttsiteesttestssaseesstesssssessteesssiteetrestreeter 19

OVERLOADED OPERATORSccttttuuttitttitttstttessstestssteestesstsaatesttestssatesteeesttteetteestieestesaan 20
OPTIONAL ARGUMENTS ..utiiiiittttte i e eesstetbbassseesssestba s seesses st baaseessees s b baa s sessseasbbaasseesssesssbaasseesssessbbsansaeasans 21
INTERNAL PROCEDURESottuiiiiiiiiittiiii e e e ettt s s e e s s e ettt e e e s s eea bbb s s e es s e e s bbb e eeass e s bbb eeasseesbbaanseessennsses 21
RECURSIVE ROUTINES. ..ettttutiiiiieetttttiseesseessssasesssesssssssssesssssssssassesssesssssssssessseessssssseesssesssssnieeessressssnnnnns 22
[/ EXXTENSIONS....uuuuuuuuuunuussrsssnnssssssssnsnsnnnns 22
OTHER FORTRAN 90 FEATURES. ..uuu i iiiiiitttttiieeesstestbe s s eesseesaba s eesseesabba s eesssea bbb s eesssees bbb esssseesbbaasaeaaans 22
RE ST RICT IONS. ... e e e e e e e e e s s s e e s e s s e e e s e sssssnnsaannnas 23
A 25

VAST/f90 User's Guide Table of contents v

1. Introduction

Compiling Fortran 90

VAST/f90 compiles Fortran 90 by trandating it into Fortran 77, which isthen compiled by alocal
Fortran 77 compiler. Using VAST/f90 issimple; you can just use the supplied f 90 driver to compile your
programs. For example, if your program ismypr og. f 90 , just use this command to compile it:

f90 nyprog.fa0

You can use whatever options you normally use for your Fortran 77 compiler and linker on thef 90
command line; they are passed to the appropriate step in the compilation process automatically.

If you just wanted to run it through VAST/f90 and see the intermediate Fortran 77 code, use:
vf 90 nyprog. f90

or
f90 -c -keep nyprog.f90

and look at Vimypr og. f . This may be useful in debugging new code or in learning more about Fortran
90.

By default, VAST/f90 assumes that if thefile suffix is. f 90, the sourceisin free format, which isthe
new source form available with Fortran 90. If you have Fortran 90 programs that are in the old fixed
format source form (comments starting with Cinstead of ! , continuations via column 6 rather than with
the &, etc.), usethe- ya switch when you run f 90 or vf 90, or usea. f file suffix. Example:

f90 -W, -ya nyprog.f90
VAST/fA0's efficient trand ation into Fortran 77 insures that your Fortran 90 code will run quickly.
For more information about Fortran 90 to Fortran 77 trandation, see Section 3. When trandating from

Fortran 90 to Fortran 77, VAST/f90 converts Fortran 90 array syntax into Fortran 77 DO loops; this
process is discussed in Section 4.

Further Information

Section 2 describes in more detail how to invoke VAST/f90 with thef 90 and vf 90 commands, and you
probably will want to look at this section, if nothing else.

If you areinterested in the specifics of Fortran 90 compilation, read sections 2 (invocation), 3 (f90 to
f77), 4 (array syntax to loops) and 5 (Fortran 90 examples).

VAST/f90 User's Guide 1. Introduction 1

2. Invoking VAST/f90

f90 command line

To usethe supplied f 90 driver for compiling Fortran 90 programs, just invoke it in the same manner as
your existing Fortran 77 compiler. Put the options you normally use for your Fortran 77 compiler on the
f90 command line (optimization level, etc.). If you need to pass optionsto VAST/f90 itself, you must
prefix them with - VW to distinguish them from normal compiler options. Thef 90 driver automatically
linksin the VAST/f90 library (I i bvast 90. a), which contains various functions for handling Fortran
90. Thef 90 driver searches throught the user's path in order to locatel i bvast 90. a.

fO90 [f77_conpiler_options] [-W, VAST/f90_options]
inputl [...inputn]

Example 1:

To compilefilecr unch. f 90, requesting optimization of the
trandated Fortran 77 code (- O), and compilation only (- ¢):

f90 -O -c crunch. f90
The object file created will bein filecr unch. o.
Example 2:

Torun*. m(all modules) and sub. f 90 through VAST/f90, with theinput in fixed format mode (- ya),
and compile the source output:

f90 -W, -ya *. msub.f90

The executable output will bein a. out , asusual.

vf90 command line
VAST/f90 is executed by the command:

vf90 [-0 output] [-I listing] [options]
inputl [...inputn]
out put = compilable output file. The default output file name is the input
file name prefixed by V. The extension of the default output file
will be. f.
options = VAST/f90 options and parameters. See Section 3.
i nputl... = Fortran sourceinput files.

VAST/f90 User’ s Guide 2. Invoking VAST/f90 2

vf 90 invoked with no arguments prints a short usage summary, including the VAST/f90 version number.

vf90 examples

Below are some examples of using the vf 90 command to trandate Fortran 90 to Fortran 77.
Example 1:

To run the Fortran 90 sourcefile cr unch. f 90 through VAST/f90 and get a Fortran 77 source to
compile:

vf90 crunch. f90
f77 Vecrunch.f |ibvast90. a

The Fortran 77 output is sent by default to Vcr unch. f . Nolisting fileis created. When linking the
final output, you may need to link in thel i bvast 90. a library.

Alternatively, you can just use the provided f 90 driver (see prior section) in this manner (it
automatically linksin | i bvast 90. a by looking in your search path):

f90 crunch. f90

Example 2: (with modules)

Torun gl obal . mand pr ogx. f 90 through VAST/f90, use:
vf 90 gl obal . m progx. f90

Module file names should be listed before the program units that reference them, because they must be
processed first. Source output will bein file Vpr ogx. f .

Example 3: (fixed format)

Torunfi xform f 90 through VAST/f90, where the input file uses fixed format rather than the default
free format:

vf90 -ya fixformf90

VAST/f90 User’ s Guide 2. Invoking VAST/f90 3

File extensions

The table below summarizes the file types that VAST/f90 may use or create.

Extension

f

.1 nf

. VO

Description
Fixed form Fortran source.

Fortran INCLUDE (Fortran 90 and extended Fortran 77)
(usually used to hold common blocks).

Fortran 90 source (free form).

Fortran 90 module: used in place of COMMON to hold global
data, may also have internal routines that operate on the data.

File holding Fortran 90 interface block(s): number, intent, type
and attributes of the argumentsto a routine -- used to check
connections between program units.

Fortran 90 module, compiled to VAST/f90 binary form;
overwritten each time the module is compiled.

Vrodul e_nane. i nc Modules are converted to common blocks. Each module

resultsin an INCLUDE file being generated. Thisfileisthen
used in the Fortran 77 trandation. Thesefiles can be deleted
after all routines which used the specific module have been
compiled into object files.

VAST/f90 User’ s Guide 2. Invoking VAST/f90

3. FOOto k77

This section discusses aspects of compiling Fortran 90 using VAST/f90. This processis automatic, and
does not require intervention on your part

Trandlation of Fortran 90 array syntax to Fortran 77 loops is described separately in the section following
thisone.

Thetarget of VAST/f90 is not limited to the Fortran 77 standard; instead, VAST/f90 targets extended
Fortran 77 in most implementations. For instance, for clarity VAST/f90 on most platforms will generate
loops that have no labels (DO/ENDDO), which isnot standard Fortran 77 but is a feature of almost all
modern Fortran 77 compilers. VAST/f90 will also generate Fortran 77 with INCLUDE statements, which
are also available on most systems.

Optionally, VAST/f90 also can make use of the POINTER Fortran 77 extension (which isdifferent from
Fortran 90 Pointers, see discussion below).

VAST/f90 inspects the input source and flags Fortran 90 syntax errors.

Options

The table bel ow shows the switches that affect the transformation of the input program. - x enablesthese
switches (on), - y disables these switches (off).

Table 3.1 -- Transformation control switches (For Fortran 90 compilation)

Switch Description Default
a Free format input source code. on

b Free format output source code off

c CM Fortran input. off

a Trandlate derived types to VAX-compatible structures off

3 Usethe F77 Pointer extension in trandated output on

4 Assume potential overlap between pointers on

5 Generate cpp file/line number directivesin output. *

Asan example, - xb requests that the Fortran 77 output source file be free format.
Notes on transformation switches:
a. Inputfileisfreeformat. Usualy, Fortran 90 input fileswill be free format, and
thisisthe default. 1f you have afixed format Fortran 90 file that you want

converted to Fortran 77, usethe-ya switch to request fixed format input.

b. Output fileisfreeformat. The default isfixed format output for Fortran 77 files. 1If
you want free format Fortran 77 output, specify - xb.

VAST/f90 User’'s Guide 3. FO0to F77 5

Input source is Connection Machine (CM) Fortran. VAST/f90 then assumes that
theinput source is 132 column fixed form, and the order of arguments on array
intrinsics fit CM Fortran definitions. Note: the CM Fortran intrinsics FI RSTLCC,
LASTLQOC, DI AGONAL, PROJECT, and RANK are not supported in the current
version.

By default, on most systems VAST/f90 uses the PO NTER extension of Fortran 77
(provided by many vendors) in the F77 intermediate code. This switch can be
turned off (- y3) for systemsthat don't have this extension. Also, for systems that
do have the extension, performance of code involving PO NTERs and
ALLOCATABLES often improvesif this feature is turned off.

It is possible to mask a potential recursion between a pointer and another object by
pointing at identical or ovelapping areasin memory. Thiskind of recursion israre
in practice but it is unsafe for the compiler to assume it never happens. If itis
known that it doesn’t happen in the input source, use - y4 on the command line.
Thiswill decrease execution time and memory requirements for codes making use
of pointers, particularly arrays.

Many unix Fortran 77 compilers accept ¢ preprocessor directives indicating source
fileand line number. VAST/f90 can generate these in the output as a way of
relating generated source linesto original sourcelines. Thisallows runtime error
messages and debuggersto refer to original source line numbers. Default is system-
dependent.

Other parameters

The parameter - Zr ecur =nnn can be used to specify a recursion stack size different than the default of

100.

The parameter - Hpat h can be used to specify the location of directory to search for INCLUDE files.

System-dependent optimization

On some workstation platforms, VAST/f90 applies superscalar optimization to the generated Fortran 77
code, for improved runtime performance. This feature isinvoked by the - O switch.

Typical optimizations include:

Loop unralling

Loop fusion

Loop collapse

Cache blocking

IF removal

Expression optimizations

VAST/f90 User’'s Guide 3. FO0to F77 6

Debugging

VAST/f90 can optionally generate cpp file/line number directives for those Fortran 77 compilers that
accept them. (Option - x5.) Thisallows runtime error messages and interactive debuggers to refer to
original source line numbers. However, as with any optimizing compiler, there may no longer be a one-
to-one correspondence between input and output source statements, and variables may have been
eliminated or transformed.

Overview of Fortran 90

Coding in Fortran 90 can produce much better structured and more readable code than was possiblein
Fortran 77. Features of Fortran 90 include:

Array syntax. You can use triplet notation that allows the start, end and increment
of an array section to be specified. In addition, there are many new array intrinsics
available. wher e statements allow conditional operations on arrays. Array syntax
may be more readable than the equivalent loops.

Attribute form of declarations. You can declarealist of variables to have the same
attributes. Data types can be declared with the ki nd parameter.

New control statements. Thereareexi t, cycl e,case,anddo whi |l e. These
allow you to avoid the use of confusing got o statements.

Derived types. These allow structured data.

Modules. These allow the grouping of global data (aswell as procedures that
operate on that data). Using modules, you can avoid the pitfalls of the old COVMON
and EQUI VALENCE statements.

ALLOCATE/ DEALLCCATE. You can create and destroy data objects dynamically.
Interface blocks. Y ou can have optional arguments and keyword arguments to your
procedures. Interface blocks also enable the compiler to check type and number
mismatches on parameter lists and to improve the optimization of external calls.
This helps to tie the program together more than was possible with older Fortrans.
Internal subroutines. Oneleve of local subroutinesis allowed.

Pointers. Variables can "point at" objects that are declared to be targets.

Recursive routines. A routine may reference itself.

New ingtrinsics. Several new intrinsics are available for string manipulation and
other functions.

New source form. Free format programs get away from the column-orientation of
older Fortran.

New operators. Symbolic relational operators are available.

I/O options. Y ou can now do non-advancing 1/0, and you can specify the position
of afilewhen you open it. These I/O features are the only part of Fortran 90 not
currently available in VAST/f0.

Compatibility with Fortran 77. Fortran 77 programs are valid Fortran 90 programs,
so Fortran 90 maintains compatibility with older code.

Examples of various Fortran 90 constructs can be found in Section 5.

VAST/f90 User’'s Guide 3. FO0to F77 7

Efficiency

When coding in Fortran 90, these are some areasto be aware of, if performance of executable codeisa
concern:

Pointers. Overuse of pointers and targets may hide true dependencies from the
compiler, and result in slower code.

Array syntax fusion. The compiler generates more efficient code from array
syntax when there are successive conformable statements. Within a group of array
syntax statements, avoid intervening scalar statements or other non-array syntax.
Avoid confusing subscripting or other constructs that may inhibit the compiler’s
conformability analysis.

Passing array sections. Passing non-contiguous array sections as procedure
arguments can result in excessive data motion.

Allocate/Deallocate. These operations may incur system overhead; avoid
repeatedly allocating items that are used for only a short time.

Transformational intrinsic functions. Certain of these, for example SPREAD and
RESHAPE, may be relatively inefficient compared to DO loop equivalents.
Internal procedures. Although these are intended as generalizations of the
Fortran 77 statement function feature, current compilers do not always optimize
references to them to the same degree as statement function references.
Array-valued functions. Depending on context and implementation, array-valued
function references may incur extra data motion overhead.

Recursion. Generally inefficient in execution compared to non-recursive
algorithms.

| NTENT. Use of interface blocks and the | NTENT attribute for dummy arguments
can help the compiler reduce unneeded operations when invoking externals.

VAST/f90 User’'s Guide 3. FO0to F77 8

4. Array Syntax

VAST/f90 transforms Fortran 90 array syntax into Fortran 77 DO loops; this trandation of array syntax to
loopsisalso called scalarization. Array syntax is one of the more important features of Fortran 90, and
this section looks at it in more detail.

Features

Features of the array syntax include:
- unsubscripted arrays
vector-valued subscripts
triplet (colon) notation
multi-dimensional shapes
WHERE/ EL SEWHERE/ ENDWHERE blocks
array constructors
array-valued intrinsic functions
transformational intrinsic functions
- array inquiry intrinsic functions
Array syntax expressions can appear anywhere that expressions are allowed in Fortran 77. (In some
statements these would need to involve reduction operations to wind up with a scalar value).

VAST/f90 analyzes conformability of all input array expressionsto insure that they meet the rules of the
language.

Array expressions
Fortran 90 allows the use of array sections viathetriplet notation, which allows a start, end and stride to
be specified. Here are some sample expressions :

a entire array

a(nl: n2: n3) start:end:stride

aa(:,:) entire array
aaa(1:9:2,97:9:-1,5) 2-dimensional section

a*b element by element product
a(1:10) + a(9:0:-1) element by element sum

sin(b) element by element sine

sum(a) sum of array elements

Confor mability

Two array sections are conformable if they have the same shape or if one of them isa scalar. Arrays must
be conformable if they are combined in an expression.

The shape of an array section is described by the rank and extents, where rank is the the number of
dimensions and extent is the number of elementsin a given dimension.

real :: a(100), aa(100, 100), aaa(100, 100, 100)

VAST/f90 User’ s Guide 4. Array Syntax 9

a = 2.*aa(1, 1:100) conformable
a = sca conformable
a = aa(1:1,1:100) non-conformable
aa = sin(aa + sca) conformable
aa = aa + aaa non-conformable

Masked operations

VWHERE statements are used to indicate conditional array operations. The operations are done for each
element corresponding to a true element in the WHERE clause.

real, dinmension(100)::

where (a .ge.

where (a .eq. b))
c = 0.

el sewher e
c = 1.

endwher e

Intrinsic functions

a, b, c

0) b =sqgrt(a)

There are several categories of functions that can operate on arraysin Fortran 90. Elemental functions are
scalar functions which may be applied to arrays; these functions are shape preserving -- their result isthe
same shape as their input(s). Examples of thesearesi n, cos,andsqrt .

Transformational functions have the ability to change the shape of the result array. Examples of these are

sum product , and r eshape.

Inquiry functions depends on a property of the array rather than the value; they return such attributes as

shape or size of an array.

Here are some of the array intrinsic functions:

SUM (ARRAY, DI M [, MASK])

MAXVAL (ARRAY[, DI M [, MASK])
(also M NVAL)

ALL (MASK [,DIM)
ANY)

COUNT (MASK [,DIM)

DOT_PRODUCT
(VECTOR A, VECTCR B)

MATMUL (MATRI X_A, MATRI X_B)
multiply

TRANSPOSE (MATRI X)

Sum of array elements (also PRODUCT)

Maximum of array el ements

Mutual 'AND’ of array el ements (also

Number of true array elements.

Inner product of the vectors.

Matrix multiply, or vector matrix.

Transpose the elements of the matrix.

VAST/f90 User’'s Guide

4. Array Syntax 10

PACK (ARRAY, MASK[, VECTOR]) Where MASK is true, put elements of
ARRAY into a 1-dimensional array.

UNPACK (VECTOR, MASK, FI ELD) Where MASK is true, put elements of
VECTOR into a multi-dimensional array

VERGE(TSOURCE, FSOURCE, MASK) Result is TSOURCE where MASK is
true, FSOURCE whereitisfalse.

SPREAD (SOURCE, DI M NCOPI ES) Replicate SOURCE along dimension

DI M
RESHAPE Rearrange elements of SOURCE into a
(SOURCE, SHAPE[, PAD] [, ORDER]) new array.
MAXLCC (ARRAY], MASK]) Find indices of max element of ARRAY
(also M NLOC)
SHAPE (SOURCE) Extent of SOURCE in each dimension.
SI ZE (ARRAY[,DI M) Number of elements of ARRAY.
CSH FT (ARRAY, SH FT[,DI M) Circular shift of elements of ARRAY.
ECSHI FT End-off shift of elements of ARRAY.

(ARRAY, SHI FT[, BOUNDARY] [, DI M)

Indirect addressing

Arrays can have vector-valued subscripts, as shown below; hereaa hasarray sectioni a(:) asoneof its
subscripts.

real, dinmension(100,100):: aa, bb
i nteger, dinmension(100):: ia

bb = aa(ia(:),:)

Array constructors
Array constructors can be used to initialize arrays.

di mensi on a(9)
!
I array constructor exanple
!
a=1(/1,23,45,6,x,Y,2/)

Trandation:
a(l)
a(2)
a(3)
a(4)

A WNPF

VAST/f90 User’ s Guide 4. Array Syntax 11

a(s)
a(6)
a(7)
a(8)
a(9)

I n
N< X ool

Fusion

VAST/f90 is able to generate code for whole blocks of array assignments together
(fusion). Thisresultsin much more efficient code than a line-by-line compilation, as temporaries and
subexpressions can be used across statements.

Fusing statements together in this way involves examining the dependencies the array assignments
represent and the conformability of successive array expressions, and determining that such fusion will
not cause different answers to result.

In the example bel ow, the loops cannot be safely fused. If the second statement referenced a(9: 19)
instead, then VAST/f90 would fuse both statements into the same loop.

a(10:20) = b(10:20)
c(10:20) = a(1l1:21)
Trandation:

doj1=1, 11

a(j1+9) = b(j1+9)
enddo
doj1=1, 11

c(j1+9) = a(j 1+10)
enddo

Some statements are split into two loops when being converted, asin this example:
c(10:20) = c(9:19) + c(11:21)

Trandation:
real r1(11)
doj1=1, 11
ri(jl) = c(j1+8) + c(j1+10)
enddo
doj1=1, 11
c(j1+9) =r1(j1)
enddo

Multi-dimensional array syntax is fused where possible into nested loops. When dependencies force
fusion to be abandoned along a dimension, other dimensions may still be fused.

The example below demonstrates fusion of array syntax statements into nested loops. The third statement
is not conformable and is not fused with the first two.

real, dinmension(100, 100, 100):: ccc, ddd, eee
!
I the next two statenents are conformabl e
ccc(3: mt2, 3: k+2,3:1+2) =

VAST/f90 User’ s Guide 4. Array Syntax 12

1 2.*ddd(4: m3, 4: k+3,4:1+3) + X
eee(m1:-1,k:1:-1,1:1:-1) =
1 sqgrt(eee(m1:-1,k:1:-1,1:1:-1))
|
I the next one is non-conformable with the previous
aaa(1:10:2,:,10:1:-1) =
1 cos (bbb(14:5:-2,100:1:-1,1:10)

end
Trandation:
do j3 =1, |
doj2 =1, k
dojl=1 m
cce(j 142, 2+2,j3+2) =
1 2.*ddd(j 1+3,] 2+3,] 3+3) + X
eee(mtl-j 1, k+1-j2,1+1-j3) =
1 sqrt(eee(mrl-j 1, k+1-j2,1+1-j3))
enddo
enddo
enddo
c
do j3 =1, 10
do j2 =1, 100
dojl=1, 5
aaa(j 1*2-1,j2,11-j3) =
1 cos(bbb(16-j1*2,101-j2,j3))
enddo
enddo
enddo
Examples

Shown below is an example of the trandlation of array syntax statements involving the use of
transformational functions.

real, dinmension(100, 100, 100):: aaa, ccc
real, dinmension(100,100):: bb

!

I sumwth '"mask' and 'dim paraneters

!

bb = sum (aaa, di =3, mask=(ccc.le.0))

Trandation:
do j3 =1, 100
do j2 =1, 100
bb(j2,j3) =0
1 =

do | 1, 100
if (ccc(j2,j3,j1) .le. 0)
1 bb(j2,j3) = bb(j2,j3)+aaa(j2,j3,j1)
enddo
enddo
enddo

VAST/f90 User’ s Guide 4. Array Syntax

Here is an example of WHERE statement trandation. In the first statement, the transformational intrinsic
function SUMmust be calculated in aloop outside of the WHERE clause.

All of the statements excluding the first one are fused into one large loop.

real, dinension(100):: a, b, ¢, d, e
!
I one line WHERE wi th transformational
where (sum(a) .gt. a) d =e
!
I WHERE bl ock structure
a(l:n) =sin (b(2:n+l))
where (a(l:n) .gt. 0)
c(l:n) = 2.*a(1l:n)

el sewhere
c(l:n) = 2.*e(n:1:-1)
d(1:n) = b(1l:n)*d(1:n)
endwher e
Trandation:
rl =20
doj1l =1, 100
ri =rl1 + a(jl)
enddo

dojl =1, 100
if (r1 .gt. a(jl)) d(j1) =-e(j1)
enddo
c
¢ VWHERE bl ock structure
dojl=1, n
a(j1) = sin(b(j1+1))
if (a(j1) .gt. 0) then

c(jl) = 2.*a(j1)
el se
c(j1) = 2.*e(n+1-j1)
d(j1) = b(j1)*d(j1)
endi f
enddo

The example below shows transformational intrinsics used in scalar statements. The array calculation is
donein aloop and the value used in the scalar statement.

VAST/f90 User’ s Guide 4. Array Syntax 14

!
I Need to 'migrate' dotproduct and sum
!
if (dotproduct(a(l:1),b(1:1)) .gt. 0) then
a=x
elseif (suma).eq.x) then
b = x
endi f

Trandation:

r2z =20
do j1

r2
enddo
r3 =20
do j1

r3
enddo

1, |
r2 +a(j1)*b(j1)

1, 100
r3 + a(jl)

if (r2 .gt. 0) then
doj1 =1, 100
a(j1) =x
enddo
else if (r3 .eq. x) then
doj1 =1, 100
b(j1) = x
enddo
endi f

Finally, the example below shows the use of several keyword arguments on a transformational function.

real, dinension(100, 10, 100):: out
real, dinension(100,100):: a

!

I spread

!
out = spread (a, dim2, ncopies=10)

Trandation:

do j3 =1, 100
doj2 =1, 10
dojl =1, 100
out(j1,j2,j3) =a(j1,j3)
enddo
enddo
enddo

VAST/f90 User’ s Guide 4. Array Syntax

5. Fortran 90 Examples

Cycle and Exit

EXIT requests termination of the current loop, CY CLE requests the next iteration.

loopi: doi =1
| oopj: do j ,
if (d(i,j).eq
if (d(i,j).eq.
a(i) =b(i) +d
end do | oopj
end do | oopi

) exit | oopi
) cycle |oopj
i)

~ro

CASEs

Cases allow amore structured test than block |F constructs.

IF (ARGL /= 0) THEN
SELECT CASE (ARGL)
CASE(1)
AR

CASE(2)

ARG3

ARGL
ARGL
SELECT CASE(ARG3+ARG2)
CASE(3)
WRI TE(6, *)' WRONG '
CASE(4)
WRI TE(6, *)' R GHT '
END SELECT
CASE(3)
ARG = 3
CASE DEFAULT
AR® = 0
END SELECT
ENDI F

Derived Types

Derived types alow structuring of data. Nested derived types are allowed; derived type definitions can
include references to other derived types.

If you want derived types trandated into VAX-compatible structure declarations, instead of lower-level
arrays, usethe - xq switch.

VAST/f90 User’ s Guide 5. Fortran 90 Examples 16

type stats
i nteger, dinension(5) :: rbi, hrs
end type stats

type team

character*10 pl ayer

i nteger nunber

type (stats) statistics
end type team

type (team) roster(9)

iloop: doi =1, 9
wite(6,50) roster(i) % pl ayer
if (roster(i) %player ==" ') cycle il oop
doj =1,

wite(6,60) roster(i) %statistics %rbi(j)
wite(6,70) roster(i) %statistics %hrs(j)
end do
end do il oop

50 format (2x, ' player: ',al0)

60 format (2x, ' rbis: ',i3)
70 format (2x, ' hrs: ',i2)
end

ALLOCATE/DEALLOCATE

ALLOCATE/ DEALLCCATE allow dynamic allocation of data items.

subroutine alloc_deno

real, dinmension(80,90) :: a
conpl ex, dinension(80,90) :: b
!
real, dinension(:,:), allocatable :: ¢
conpl ex, dinension(:,:), allocatable :: d

al l ocate (c(20,90), d(20,90))

c cos (a(:20,:))
d b(:20,:)**2
a(:20,:) = c*c - abs(d*d)

deal | ocate (c, d)

end

Automatic Arrays

Fortran 90 automatic arrays alow dummy argument, module, or common variables in the dimensions of
local arraysin subroutines and functions. These arrays are allocated by the compiler on entry to the
subprogram and deallocated on exit.

VAST/f90 User’ s Guide 5. Fortran 90 Examples 17

SUBROUTI NE AUTOL (B, N)

REAL A(N), B(N (A isan automatic array.)
READ (9,*) A

B = SQRT(A) + B

WRI TE (10,*) B

RETURN

END SUBROUTI NE AUTOL

Intrinsic functions

VAST/f90 recognizes all Fortran 90 intrinsic functions and the keywords
allowed for each of them. A library (I i bvast 90. a) issupplied for new intrinsic functions, and should
be linked into the final program (it isautomatically linked in by the f 90 driver).

MODULEs

Modules alow collections of global data without the storage association of COMMON blocks; modules
can also contain code related to the data.

MODULE NANE
REAL A(10), B, C(20, 20)
INTEGER :: | = 0

| NTEGER, PARAMETER :: J = 10
CHARACTER* (J) STRI NG

CONTAI NS

SUBROUTI NE ONE
A=1
END SUBROUTI NE ONE

END MODULE NAME

Variables can be renamed on the USE statement to have a different name within the referencing
procedure.

USE NAVE, ONLY: B
| NTEGER A(400)
CALL ONE

Modules can reference other modules.

MODULE JQ
REAL JX, JY, JZ
END MODULE
MODULE KQ
USE JQ ONLY : KX => JX, KY => JY
I KX and KY are | ocal nanes to nodul e KQ

REAL KZ I KZis local name to nodul e KQ
REAL JZ I JZ is local name to nodul e KQ
END MODULE

VAST/f90 User’ s Guide 5. Fortran 90 Examples 18

POINTERS

Here is an example of Fortran 90 pointers:

real, pointer:: x, z

real, target:: t

|

>t I pointer assignment
+ 1.0

X

+ 2.0

¥z

T N N X X
x

=

= noan
\Y%

>
— X

Pointers can also be used with ALLOCATE/ DEALLOCATE to allocate instances of derived types, for
instance.

Fortran 90 hasthe NULLI FY statement, which allows the pointer to be nullified. The pointer can also be
tested by the ASSOCI ATED intrinsic function to seeif it is currently attached.

Attribute declarations

Fortran 90 allows a new form of declarationsin which multiple attributes can be specified for a given item
or itemsin asingle declaration. In addition, the KI ND attribute can be specified, which controls the data
length of the intrinsic type (real can be single or double or extended precision, for instance).

The KI ND parameter isinterpreted by VAST/f90 to be the number of bytes typically used to represent
such a quantity.

I NTEGER, | NTENT(IN) :: ARGl
| NTEGER, | NTENT(QUT) :: ARR

| NTEGER | NTENT(1 NOUT) :: ARG3

LOG CAL, DI MENSI ON(5,5) :: MASKI, MASK2
CHARACTER (LEN=10) CHARACTER STRI NG
REAL, DIMENSION(-5:+5) :: X, Y, Z

REAL (KI ND(0.0D0)) A DECLARATI ON

REAL, PRIVATE :: XPR'V, YPRIV, ZPRIV

Initial values can be specified in the declarations in a new way as well, as seen below.

COVPLEX :: CUBE_ROOT = (-0.5, 0. 866)

| NTEGER, PARAMETER :: SHORT = 2

| NTEGER (SHORT) K

REAL, PARAMETER :: ONE = 1.0, YY = 4.1/3.0

| NTEGER, DI MENSI ON(3), PARAMETER :: ORDER=(/1,2,3/)

In addition, constants can be postfixed with a kind identifier (usingan _), asin 1. 0e6_8.

User-defined operators

With Fortran 90, the programmer can define new operators which can be used in place of function callsto
perform operations.

VAST/f90 User’ s Guide 5. Fortran 90 Examples 19

In the example bel ow, the user-defined operator . USER. stands for several function calls.

| NTERFACE OPERATOR(. USER)
| NTEGER FUNCTI ON | NT_USER(1, K)
I NTEGER, INTENT(IN) ©: I,K
END FUNCTI ON | NT_USER

REAL FUNCTI ON REAL_USER(R, S)
REAL, INTENT(IN) :: RS
END FUNCTI ON REAL_USER

END | NTERFACE

| NTEGER |, K, L
REAL Q R S

LOG CAL L1, L2, L3
L = K.USER |
Q=R.USER S

Overloaded operators

With Fortran 90, you can "overload" existing operatorssuch as+, -, *, etc. by defining different
operations for them for different data types. You can even add meaning to the assignment operator(=).

Y ou cannot overload an operator which is already defined intrinsically, asin
integer + integer or | ogical.and.logical or real = integer.

In the example below, the. AND. operator isredefined for integer arguments.

| NTERFACE OPERATOR(. AND.)
| NTEGER FUNCTI ON | NT_AND |
I NTEGER, INTENT(IN) ©: I,K
END FUNCTI ON | NT_AND

» K)

REAL FUNCTI ON REAL_AND(R, S)
REAL, INTENT(IN) :: RS
END FUNCTI ON REAL_AND

END | NTERFACE

| NTEGER |, K, L
REAL Q R S

LOG CAL L1, L2, L3
L =K.AND |
Q=R.A\D S

L1 = L2 . AND. L3

The example below shows redefinition of the assignment operator.

| NTERFACE ASSI GNVENT (=)
SUBROUTI NE BI T_TO NUMERI C(N, B)
I NTEGER, | NTENT(OUT) :: N
LOG CAL, INTENT(IN) :: B(:)
END SUBROUTI NE Bl T_TO NUMERI C

SUBRQOUTI NE NUMERI C_TO BI T(B, N)

VAST/f90 User’ s Guide 5. Fortran 90 Examples 20

LOG CAL, |NTENT(OUT) :: B
I NTEGER, INTENT(IN) :: N
END SUBROUTI NE NUMERI C TO BI T

END | NTERFACE

LCE CAL LL
| NTEGER BB
BB = LL
LL = BB

Optional arguments

In order to use OPTI ONAL arguments, you must have an interface block (either in line or from a USEd

MODULE or an | NCLUDE). Optional arguments allow calls to be made with arguments missing. Each
optional argument must be declared OPTI ONAL in the interface file and in the called routine. In the

called routine, the optional argument can be tested for with the PRESENT intrinsic function.

SUBROUTI NE UNO (Z)
REAL Z
| NTERFACE
SUBROUTI NE DOS (EXTRA, TEMP, RESULT)
REAL, INTENT(IN) :: EXTRA TEWP
OPTI ONAL EXTRA
REAL, | NTENT(OUT) :: RESULT
END SUBROUTI NE DOS
END | NTERFACE
CALL DOS (RESULT = Z, TEMP = 272.0)
PRINT *, Z
RETURN
END SUBROUTI NE UNO

| nternal Procedures

Internal procedures are set off by the CONTAI NS statement. Only one level of internal procedureis
allowed in the FO0 Standard, so you cannot have internal procedures within internal procedures.

However, module procedures may have internal procedures.

SUBROUTI NE ONE

N=2

CALL TVWO

N=3

CALL THREE

I
CONTAI NS
SUBRQUTI NE TWD
PRINT *, N

END SUBRCUTI NE TWD

SUBROUTI NE THREE
PRINT *, N

END SUBROUTI NE THREE

END SUBROUTI NE ONE

VAST/f90 User’ s Guide 5. Fortran 90 Examples

Recursive routines

With Fortran 90, routines can call themselvesif they are declared as recursive.

recursive integer function fact (j) &
result (factx)
if (j.eq.1 .or. j.eq.0) then

factx = 1
el se

factx =j * fact(j-1)
endi f
end

/O Extensions

Thisversion of VAST/f90 does not trand ate the few 1/0 enhancements available in Fortran 90. The
extensions are:

File positioning on OPEN
Non-advancing 1/O
Additional edit descriptors

VAST/f90 issues diganostic messages whenever these unimplemented F90 features are encountered.

Other Fortran 90 features

Among other featuresin Fortran 90 are:

The RESULT clausein Fortran 90 allows a different returnvalue variable for a
function.

Unit name on END statement.

New symbolic comparison operators <=, etc.

VAST/f90 User’ s Guide 5. Fortran 90 Examples

Restrictions

Following isalist of restrictions and unimplemented features.

Use of SEQUENCE with derived types, including:
Equivalence of derived type with non-conformable derived types or other
variables.
Sequence derived types arrays in COMMON cannot be accessed in all
possible ways.

type abc
sequence
i nteger, dinension(10) :: a,b
end type
type(abc) da
conmon /.../ da(10)

da(j)%(11) = ... [onemight think this refers to da(j)%b(1)]
TRANSFER intrinsic.

type uh_oh
sequence
real x, y
end type
type (uh_oh) bad(100)
conpl ex ¢
¢ = TRANSFER (bad(50), c)

Nonadvancing input. (Nonadvancing output istrandated using the $ edit
descriptor, where available.)

For some systems, list-directed I/O tointernal file. (Thisislegal f90 but not f77;
some 77 compilers allow, some don't.)

For some systems, character array pointers. (Dependson f77 compiler.)
Non-f77-pointer mode (-y3): doesn't handle character pointersor mis-aligned data.

Recursion islimited to a stack size, with default of 100. The stack size can be
increased or decreased with the - Zr ecur =val ue option.

NAMELI ST 1/O for derived types.
DELI M= on OPEN statements.
RECL= on OPEN statements for sequential access files.

Use of array elementsin specification (i.e. dimensioning) expressions.

VAST/f90 User's Guide Redtrictions 23

Recursive ENTRYS.

SI ZE of expression involving implied DOs with certain kinds of variable upper
bounds.

subroutine sub(n)
isize = SIZE((/((i,i=2,]),j=1,n)/))

Seven-dimensional array in recursive routine.
Automatic character objectsin recursive routines.

DATA statement with vector subscript.

i nteger, paraneter :: v(3)=(/3,2,1/)
i nteger a(3)

data a(v(:)) /1,2,3/

wite(*,*) a

Certain user character functions with dynamic length.

Use of certain intrinsic functions in dimensioning expressions of dummy arrays and
character variables.

subroutine sub(a,n, nm
di mensi on a(max(n, m, 100)

Some argumentsto | NQUI RE(| OLENGTH=) :
dummy arguments
implied DOs
derived types
expressions involving functions

Function argument to recursive procedure, if the function can be different at
different levels of the recursion.

DATAINg of derived type variablesin BLOCK DATAs; handled only if no
components are arrays or structures.

Indirect recursion.

For some systems, possibly a few of the new edit descriptors e.g. B, depending on
what extensions the f77 compiler allows.

VAST/f90 User's Guide Redtrictions 24

| ndex

—A—

allocate/deallocate, 9, 18
array constructors, 12
array syntax, 10
array-valued functions, 9

—C—

C preprocessor, 7

conditional array operations, 11
conformability, 9, 10, 13
Connection Machine Fortran, 7

—D—

debugging, 7, 8
derived types, 24

—E—

demental intrinsic functions, 11

— F—

f90 driver, 3

file extensions, 5

fixed format, 1, 4, 6
freeformat, 1, 4, 6
fusion, array syntax, 9, 13

1/0 extensions, 23

indirect addressing, 12
INQUIRE(IOLENGTH=), 25
inquiry functions, 11
INTENT, 9

interface blocks, 5, 9, 22
internal procedures, 9, 22
intrinsic functions, 11, 19

—K—
KIND type parameter, 20

—M—
modules, 4, 5, 19

—N—
nonadvancing input, 24

—0O—
option switches, 6

optional arguments, 22
overloaded operators, 21

—p—

performance of executable code, 9

POINTER extension of Fortran 77, 6, 7

pointers, 7, 9, 20, 24

—R—
recursion, 9, 23, 24
recursion stack size, 7
—S—
scalarization, 10
SEQUENCE, 24

superscalar optimization, 7

S J
TRANSFER, 24

transformational intrinsic functions, 9, 11, 14

—U—
user-defined operators, 21

—V—
VAX dtructures, 17

—W—

WHERE, 11, 15

VAST/f90 User’'s Guide

