
VAST/f90
Fortran 90 Compiler

User’s Guide
Version 3.2

Pacific-Sierra Research

VAST/f90 User’s Guide Document revision record ii

Document revision record
Document Number V90B.

Edition Date Description

1.0 1/92 Initial release.

1.1 3/92 Minor corrections, INCLUDEs to MODULEs.

1.2 7/92 Added switches, more invocation examples.

2.0 1/93 Derived types to/from VAX-compatible structures,
documentation of error detection and trace tools,
Changed organization of document.

2.1 7/93 Minor improvements and corrections.

2.2 3/94 Minor improvements and corrections.

3.0 5/95 Major revision. Change document organization.

3.1 10/95 Minor reformatting.

3.2 2/98 Minor additions.

Copyright (C) 1992,1998, Pacific-Sierra Research Corporation. No unauthorized use or duplication is
permitted. All rights reserved.

VAST/f90 User’s Guide Preface iii

Preface
This is a guide to the use of VAST/f90. VAST/f90 is a compiling system for Fortran 90. This manual is
designed to give Fortran programmers an understanding of VAST/f90’s capabilities and effective use.

Fortran 90 is the new Fortran language standard (ISO and ANSI). This User's Guide does not contain
language reference information; for more information about Fortran 90, please refer to one of the many
books that have been published on this subject.

An excellent source of information on Fortran 90 is the Fortran 90 Handbook (McGraw-Hill, 1992) by
Adams, Brainerd, Martin, Smith, and Wagener. This book gives more background and examples than
the standard, and still documents the complete language.

Special notices

VAST is a registered trademark of Pacific-Sierra Research Corporation.

VAX is a trademark of Digital Equipment Corporation.

VAST/f90 User’s Guide Table of contents iv

Table of contents
DOCUMENT REVISION RECORD .. ii

PREFACE ... iii

SPECIAL NOTICES ... iii

TABLE OF CONTENTS...iv

1. INTRODUCTION..1

COMPILING FORTRAN 90 ..1
FURTHER INFORMATION ...1

2. INVOKING VAST/F90..2

F90 COMMAND LINE ...2
VF90 COMMAND LINE ...2
VF90 EXAMPLES ...3
FILE EXTENSIONS ...4

3. F90 TO F77...5

OPTIONS ..5
SYSTEM-DEPENDENT OPTIMIZATION..6
DEBUGGING ...7
OVERVIEW OF FORTRAN 90...7
EFFICIENCY ...8

4. ARRAY SYNTAX..9

FEATURES..9
Array expressions..9
Conformability ..9
Masked operations ..10
Intrinsic functions ...10
Indirect addressing ...11
Array constructors ..11

FUSION ..12
EXAMPLES ...13

5. FORTRAN 90 EXAMPLES...16

CYCLE AND EXIT..16
CASES..16
DERIVED TYPES ...16
ALLOCATE/DEALLOCATE...17
AUTOMATIC ARRAYS ...17
INTRINSIC FUNCTIONS ..18
MODULES ...18
POINTERS..19
ATTRIBUTE DECLARATIONS ..19

VAST/f90 User’s Guide Table of contents v

USER-DEFINED OPERATORS...19
OVERLOADED OPERATORS ..20
OPTIONAL ARGUMENTS ..21
INTERNAL PROCEDURES ...21
RECURSIVE ROUTINES...22
I/O EXTENSIONS ..22
OTHER FORTRAN 90 FEATURES...22

RESTRICTIONS...23

INDEX...25

VAST/f90 User’s Guide 1. Introduction 1

1. Introduction

Compiling Fortran 90
VAST/f90 compiles Fortran 90 by translating it into Fortran 77, which is then compiled by a local
Fortran 77 compiler. Using VAST/f90 is simple; you can just use the supplied f90 driver to compile your
programs. For example, if your program is myprog.f90 , just use this command to compile it:

 f90 myprog.f90

You can use whatever options you normally use for your Fortran 77 compiler and linker on the f90
command line; they are passed to the appropriate step in the compilation process automatically.

If you just wanted to run it through VAST/f90 and see the intermediate Fortran 77 code, use:

 vf90 myprog.f90

or

 f90 -c -keep myprog.f90

and look at Vmyprog.f . This may be useful in debugging new code or in learning more about Fortran
90.

By default, VAST/f90 assumes that if the file suffix is .f90, the source is in free format, which is the
new source form available with Fortran 90. If you have Fortran 90 programs that are in the old fixed
format source form (comments starting with C instead of !, continuations via column 6 rather than with
the &, etc.), use the -ya switch when you run f90 or vf90, or use a .f file suffix. Example:

 f90 -Wv,-ya myprog.f90

VAST/f90's efficient translation into Fortran 77 insures that your Fortran 90 code will run quickly.

For more information about Fortran 90 to Fortran 77 translation, see Section 3. When translating from
Fortran 90 to Fortran 77, VAST/f90 converts Fortran 90 array syntax into Fortran 77 DO loops; this
process is discussed in Section 4.

Further Information
Section 2 describes in more detail how to invoke VAST/f90 with the f90 and vf90 commands, and you
probably will want to look at this section, if nothing else.

If you are interested in the specifics of Fortran 90 compilation, read sections 2 (invocation), 3 (f90 to
f77), 4 (array syntax to loops) and 5 (Fortran 90 examples).

VAST/f90 User’s Guide 2. Invoking VAST/f90 2

2. Invoking VAST/f90

f90 command line
To use the supplied f90 driver for compiling Fortran 90 programs, just invoke it in the same manner as
your existing Fortran 77 compiler. Put the options you normally use for your Fortran 77 compiler on the
f90 command line (optimization level, etc.). If you need to pass options to VAST/f90 itself, you must
prefix them with -Wv to distinguish them from normal compiler options. The f90 driver automatically
links in the VAST/f90 library (libvast90.a), which contains various functions for handling Fortran
90. The f90 driver searches throught the user's path in order to locate libvast90.a.

 f90 [f77_compiler_options] [-Wv,VAST/f90_options]
 input1 [...inputn]

Example 1:

To compile file crunch.f90, requesting optimization of the
translated Fortran 77 code (-O), and compilation only (-c):

 f90 -O -c crunch.f90

The object file created will be in file crunch.o.

Example 2:

To run *.m (all modules) and sub.f90 through VAST/f90, with the input in fixed format mode (-ya),
and compile the source output:

 f90 -Wv,-ya *.m sub.f90

The executable output will be in a.out, as usual.

vf90 command line
VAST/f90 is executed by the command:

 vf90 [-o output] [-l listing] [options]
input1 [...inputn]

output = compilable output file. The default output file name is the input
file name prefixed by V. The extension of the default output file

 will be .f.
options = VAST/f90 options and parameters. See Section 3.
input1... = Fortran source input files.

VAST/f90 User’s Guide 2. Invoking VAST/f90 3

vf90 invoked with no arguments prints a short usage summary, including the VAST/f90 version number.

vf90 examples
Below are some examples of using the vf90 command to translate Fortran 90 to Fortran 77.

Example 1:

To run the Fortran 90 source file crunch.f90 through VAST/f90 and get a Fortran 77 source to
compile:

 vf90 crunch.f90
 f77 Vcrunch.f libvast90.a

The Fortran 77 output is sent by default to Vcrunch.f. No listing file is created. When linking the
final output, you may need to link in the libvast90.a library.

Alternatively, you can just use the provided f90 driver (see prior section) in this manner (it
automatically links in libvast90.a by looking in your search path):

 f90 crunch.f90

Example 2: (with modules)

To run global.m and progx.f90 through VAST/f90, use:

 vf90 global.m progx.f90

Module file names should be listed before the program units that reference them, because they must be
processed first. Source output will be in file Vprogx.f.

Example 3: (fixed format)

To run fixform.f90 through VAST/f90, where the input file uses fixed format rather than the default
free format:

 vf90 -ya fixform.f90

VAST/f90 User’s Guide 2. Invoking VAST/f90 4

File extensions
The table below summarizes the file types that VAST/f90 may use or create.

Extension Description

.f Fixed form Fortran source.

.inc Fortran INCLUDE (Fortran 90 and extended Fortran 77)
(usually used to hold common blocks).

.f90 Fortran 90 source (free form).

.m Fortran 90 module: used in place of COMMON to hold global
data, may also have internal routines that operate on the data.

.inf File holding Fortran 90 interface block(s): number, intent, type
and attributes of the arguments to a routine -- used to check c
connections between program units.

.vo Fortran 90 module, compiled to VAST/f90 binary form;
overwritten each time the module is compiled.

Vmodule_name.inc Modules are converted to common blocks. Each module
 results in an INCLUDE file being generated. This file is then
 used in the Fortran 77 translation. These files can be deleted
 after all routines which used the specific module have been
 compiled into object files.

VAST/f90 User’s Guide 3. F90 to F77 5

3. F90 to F77
This section discusses aspects of compiling Fortran 90 using VAST/f90. This process is automatic, and
does not require intervention on your part

Translation of Fortran 90 array syntax to Fortran 77 loops is described separately in the section following
this one.

The target of VAST/f90 is not limited to the Fortran 77 standard; instead, VAST/f90 targets extended
Fortran 77 in most implementations. For instance, for clarity VAST/f90 on most platforms will generate
loops that have no labels (DO/ENDDO), which is not standard Fortran 77 but is a feature of almost all
modern Fortran 77 compilers. VAST/f90 will also generate Fortran 77 with INCLUDE statements, which
are also available on most systems.

Optionally, VAST/f90 also can make use of the POINTER Fortran 77 extension (which is different from
Fortran 90 Pointers, see discussion below).

VAST/f90 inspects the input source and flags Fortran 90 syntax errors.

Options
The table below shows the switches that affect the transformation of the input program. -x enables these
switches (on), -y disables these switches (off).

Table 3.1 -- Transformation control switches (For Fortran 90 compilation)

Switch Description Default

a Free format input source code. on
b Free format output source code off
c CM Fortran input. off
q Translate derived types to VAX-compatible structures off
3 Use the F77 Pointer extension in translated output on
4 Assume potential overlap between pointers on
5 Generate cpp file/line number directives in output. *

As an example, -xb requests that the Fortran 77 output source file be free format.

Notes on transformation switches:

a. Input file is free format. Usually, Fortran 90 input files will be free format, and
this is the default. If you have a fixed format Fortran 90 file that you want
converted to Fortran 77, use the -ya switch to request fixed format input.

b. Output file is free format. The default is fixed format output for Fortran 77 files. If
you want free format Fortran 77 output, specify -xb.

VAST/f90 User’s Guide 3. F90 to F77 6

c. Input source is Connection Machine (CM) Fortran. VAST/f90 then assumes that
the input source is 132 column fixed form, and the order of arguments on array
intrinsics fit CM Fortran definitions. Note: the CM Fortran intrinsics FIRSTLOC,
LASTLOC, DIAGONAL, PROJECT, and RANK are not supported in the current
version.

3. By default, on most systems VAST/f90 uses the POINTER extension of Fortran 77
(provided by many vendors) in the F77 intermediate code. This switch can be
turned off (-y3) for systems that don't have this extension. Also, for systems that
do have the extension, performance of code involving POINTERs and
ALLOCATABLEs often improves if this feature is turned off.

4. It is possible to mask a potential recursion between a pointer and another object by
pointing at identical or ovelapping areas in memory. This kind of recursion is rare
in practice but it is unsafe for the compiler to assume it never happens. If it is
known that it doesn’t happen in the input source, use -y4 on the command line.
This will decrease execution time and memory requirements for codes making use
of pointers, particularly arrays.

5. Many unix Fortran 77 compilers accept c preprocessor directives indicating source
file and line number. VAST/f90 can generate these in the output as a way of
relating generated source lines to original source lines. This allows runtime error
messages and debuggers to refer to original source line numbers. Default is system-
dependent.

Other parameters
The parameter -Zrecur=nnn can be used to specify a recursion stack size different than the default of
100.

The parameter -Hpath can be used to specify the location of directory to search for INCLUDE files.

System-dependent optimization
On some workstation platforms, VAST/f90 applies superscalar optimization to the generated Fortran 77
code, for improved runtime performance. This feature is invoked by the -O switch.

Typical optimizations include:

• Loop unrolling
• Loop fusion
• Loop collapse
• Cache blocking
• IF removal
• Expression optimizations

VAST/f90 User’s Guide 3. F90 to F77 7

Debugging
VAST/f90 can optionally generate cpp file/line number directives for those Fortran 77 compilers that
accept them. (Option -x5.) This allows runtime error messages and interactive debuggers to refer to
original source line numbers. However, as with any optimizing compiler, there may no longer be a one-
to-one correspondence between input and output source statements, and variables may have been
eliminated or transformed.

Overview of Fortran 90
Coding in Fortran 90 can produce much better structured and more readable code than was possible in
Fortran 77. Features of Fortran 90 include:

• Array syntax. You can use triplet notation that allows the start, end and increment
of an array section to be specified. In addition, there are many new array intrinsics
available. where statements allow conditional operations on arrays. Array syntax
may be more readable than the equivalent loops.

• Attribute form of declarations. You can declare a list of variables to have the same
attributes. Data types can be declared with the kind parameter.

• New control statements. There are exit, cycle, case, and do while. These
allow you to avoid the use of confusing goto statements.

• Derived types. These allow structured data.
• Modules. These allow the grouping of global data (as well as procedures that

operate on that data). Using modules, you can avoid the pitfalls of the old COMMON
and EQUIVALENCE statements.

• ALLOCATE/DEALLOCATE . You can create and destroy data objects dynamically.
• Interface blocks. You can have optional arguments and keyword arguments to your

procedures. Interface blocks also enable the compiler to check type and number
mismatches on parameter lists and to improve the optimization of external calls.
This helps to tie the program together more than was possible with older Fortrans.

• Internal subroutines. One level of local subroutines is allowed.
• Pointers. Variables can "point at" objects that are declared to be targets.
• Recursive routines. A routine may reference itself.
• New instrinsics. Several new intrinsics are available for string manipulation and

other functions.
• New source form. Free format programs get away from the column-orientation of

older Fortran.
• New operators. Symbolic relational operators are available.
• I/O options. You can now do non-advancing I/O, and you can specify the position

of a file when you open it. These I/O features are the only part of Fortran 90 not
currently available in VAST/f90.

• Compatibility with Fortran 77. Fortran 77 programs are valid Fortran 90 programs,
so Fortran 90 maintains compatibility with older code.

Examples of various Fortran 90 constructs can be found in Section 5.

VAST/f90 User’s Guide 3. F90 to F77 8

Efficiency
When coding in Fortran 90, these are some areas to be aware of, if performance of executable code is a
concern:

• Pointers. Overuse of pointers and targets may hide true dependencies from the
compiler, and result in slower code.

• Array syntax fusion. The compiler generates more efficient code from array
syntax when there are successive conformable statements. Within a group of array
syntax statements, avoid intervening scalar statements or other non-array syntax.
Avoid confusing subscripting or other constructs that may inhibit the compiler’s
conformability analysis.

• Passing array sections. Passing non-contiguous array sections as procedure
arguments can result in excessive data motion.

• Allocate/Deallocate. These operations may incur system overhead; avoid
repeatedly allocating items that are used for only a short time.

• Transformational intrinsic functions. Certain of these, for example SPREAD and
RESHAPE, may be relatively inefficient compared to DO loop equivalents.

• Internal procedures. Although these are intended as generalizations of the
Fortran 77 statement function feature, current compilers do not always optimize
references to them to the same degree as statement function references.

• Array-valued functions. Depending on context and implementation, array-valued
function references may incur extra data motion overhead.

• Recursion. Generally inefficient in execution compared to non-recursive
algorithms.

• INTENT. Use of interface blocks and the INTENT attribute for dummy arguments
can help the compiler reduce unneeded operations when invoking externals.

VAST/f90 User’s Guide 4. Array Syntax 9

4. Array Syntax
VAST/f90 transforms Fortran 90 array syntax into Fortran 77 DO loops; this translation of array syntax to
loops is also called scalarization. Array syntax is one of the more important features of Fortran 90, and
this section looks at it in more detail.

Features
Features of the array syntax include:

• unsubscripted arrays
• vector-valued subscripts
• triplet (colon) notation
• multi-dimensional shapes
• WHERE/ELSEWHERE/ENDWHERE blocks
• array constructors
• array-valued intrinsic functions
• transformational intrinsic functions
• array inquiry intrinsic functions

Array syntax expressions can appear anywhere that expressions are allowed in Fortran 77. (In some
statements these would need to involve reduction operations to wind up with a scalar value).

VAST/f90 analyzes conformability of all input array expressions to insure that they meet the rules of the
language.

Array expressions
Fortran 90 allows the use of array sections via the triplet notation, which allows a start, end and stride to
be specified. Here are some sample expressions :

a entire array
a(n1:n2:n3) start:end:stride
aa(:,:) entire array
aaa(1:9:2,97:9:-1,5) 2-dimensional section
a * b element by element product
a(1:10) + a(9:0:-1) element by element sum
sin(b) element by element sine
sum(a) sum of array elements

Conformability
Two array sections are conformable if they have the same shape or if one of them is a scalar. Arrays must
be conformable if they are combined in an expression.

The shape of an array section is described by the rank and extents, where rank is the the number of
dimensions and extent is the number of elements in a given dimension.

 real:: a(100),aa(100,100),aaa(100,100,100)

VAST/f90 User’s Guide 4. Array Syntax 10

 ...
 a = 2.*aa(1,1:100) conformable
 a = sca conformable
 a = aa(1:1,1:100) non-conformable
 aa = sin(aa + sca) conformable
 aa = aa + aaa non-conformable

Masked operations
WHERE statements are used to indicate conditional array operations. The operations are done for each
element corresponding to a true element in the WHERE clause.

 real, dimension(100):: a, b, c
 !
 where (a .ge. 0) b = sqrt(a)
 !
 where (a .eq. b)
 c = 0.
 elsewhere
 c = 1.
 endwhere

Intrinsic functions
There are several categories of functions that can operate on arrays in Fortran 90. Elemental functions are
scalar functions which may be applied to arrays; these functions are shape preserving -- their result is the
same shape as their input(s). Examples of these are sin, cos, and sqrt.

Transformational functions have the ability to change the shape of the result array. Examples of these are
sum, product, and reshape.

Inquiry functions depends on a property of the array rather than the value; they return such attributes as
shape or size of an array.

Here are some of the array intrinsic functions:

SUM (ARRAY[,DIM][,MASK]) Sum of array elements (also PRODUCT)

MAXVAL (ARRAY[,DIM][,MASK]) Maximum of array elements
(also MINVAL)

ALL (MASK [,DIM]) Mutual 'AND' of array elements (also
ANY)

COUNT (MASK [,DIM]) Number of true array elements.

DOT_PRODUCT Inner product of the vectors.
(VECTOR_A, VECTOR_B)

MATMUL (MATRIX_A,MATRIX_B) Matrix multiply, or vector matrix.
multiply

TRANSPOSE (MATRIX) Transpose the elements of the matrix.

VAST/f90 User’s Guide 4. Array Syntax 11

PACK (ARRAY,MASK[,VECTOR]) Where MASK is true, put elements of
ARRAY into a 1-dimensional array.

UNPACK (VECTOR,MASK,FIELD) Where MASK is true, put elements of
VECTOR into a multi-dimensional array

MERGE(TSOURCE,FSOURCE,MASK) Result is TSOURCE where MASK is
true, FSOURCE where it is false.

SPREAD (SOURCE,DIM,NCOPIES) Replicate SOURCE along dimension
DIM.

RESHAPE Rearrange elements of SOURCE into a
(SOURCE,SHAPE[,PAD][,ORDER]) new array.

MAXLOC (ARRAY[,MASK]) Find indices of max element of ARRAY
(also MINLOC)

SHAPE (SOURCE) Extent of SOURCE in each dimension.

SIZE (ARRAY[,DIM]) Number of elements of ARRAY.

CSHIFT (ARRAY,SHIFT[,DIM]) Circular shift of elements of ARRAY.

EOSHIFT End-off shift of elements of ARRAY.
(ARRAY,SHIFT[,BOUNDARY][,DIM])

Indirect addressing
Arrays can have vector-valued subscripts, as shown below; here aa has array section ia(:) as one of its
subscripts.

 real, dimension(100,100):: aa, bb
 integer, dimension(100):: ia
 !
 bb = aa(ia(:),:)

Array constructors
Array constructors can be used to initialize arrays.

 dimension a(9)
 !
 ! array constructor example
 !
 a = (/1,2,3,4,5,6,x,y,z/)

Translation:
 a(1) = 1
 a(2) = 2
 a(3) = 3
 a(4) = 4

VAST/f90 User’s Guide 4. Array Syntax 12

 a(5) = 5
 a(6) = 6
 a(7) = x
 a(8) = y
 a(9) = z

Fusion
VAST/f90 is able to generate code for whole blocks of array assignments together
(fusion). This results in much more efficient code than a line-by-line compilation, as temporaries and
subexpressions can be used across statements.

Fusing statements together in this way involves examining the dependencies the array assignments
represent and the conformability of successive array expressions, and determining that such fusion will
not cause different answers to result.

In the example below, the loops cannot be safely fused. If the second statement referenced a(9:19)
instead, then VAST/f90 would fuse both statements into the same loop.

 a(10:20) = b(10:20)
 c(10:20) = a(11:21)

Translation:
 do j1 = 1, 11
 a(j1+9) = b(j1+9)
 enddo
 do j1 = 1, 11
 c(j1+9) = a(j1+10)
 enddo

Some statements are split into two loops when being converted, as in this example:

 c(10:20) = c(9:19) + c(11:21)

Translation:
 real r1(11)
 do j1 = 1, 11
 r1(j1) = c(j1+8) + c(j1+10)
 enddo
 do j1 = 1, 11
 c(j1+9) = r1(j1)
 enddo

Multi-dimensional array syntax is fused where possible into nested loops. When dependencies force
fusion to be abandoned along a dimension, other dimensions may still be fused.

The example below demonstrates fusion of array syntax statements into nested loops. The third statement
is not conformable and is not fused with the first two.

 real, dimension(100,100,100):: ccc, ddd, eee
 !
 ! the next two statements are conformable
 ccc(3:m+2,3:k+2,3:l+2) =

VAST/f90 User’s Guide 4. Array Syntax 13

 1 2.*ddd(4:m+3,4:k+3,4:l+3) + x
 eee(m:1:-1,k:1:-1,l:1:-1) =
 1 sqrt(eee(m:1:-1,k:1:-1,l:1:-1))
 !
 ! the next one is non-conformable with the previous
 aaa(1:10:2,:,10:1:-1) =
 1 cos (bbb(14:5:-2,100:1:-1,1:10)
 !
 end

Translation:
 do j3 = 1, l
 do j2 = 1, k
 do j1 = 1, m
 ccc(j1+2,j2+2,j3+2) =
 1 2.*ddd(j1+3,j2+3,j3+3) + x
 eee(m+1-j1,k+1-j2,l+1-j3) =
 1 sqrt(eee(m+1-j1,k+1-j2,l+1-j3))
 enddo
 enddo
 enddo
c
 do j3 = 1, 10
 do j2 = 1, 100
 do j1 = 1, 5
 aaa(j1*2-1,j2,11-j3) =
 1 cos(bbb(16-j1*2,101-j2,j3))
 enddo
 enddo
 enddo

Examples
Shown below is an example of the translation of array syntax statements involving the use of
transformational functions.

 real, dimension(100,100,100):: aaa, ccc
 real, dimension(100,100):: bb
!
! sum with 'mask' and 'dim' parameters
!
 bb = sum (aaa, dim=3, mask=(ccc.le.0))

Translation:
 do j3 = 1, 100
 do j2 = 1, 100
 bb(j2,j3) = 0
 do j1 = 1, 100
 if (ccc(j2,j3,j1) .le. 0)
 1 bb(j2,j3) = bb(j2,j3)+aaa(j2,j3,j1)
 enddo
 enddo
 enddo

VAST/f90 User’s Guide 4. Array Syntax 14

Here is an example of WHERE statement translation. In the first statement, the transformational intrinsic
function SUM must be calculated in a loop outside of the WHERE clause.

All of the statements excluding the first one are fused into one large loop.

 real, dimension(100):: a, b, c, d, e
!
! one line WHERE with transformational
 where (sum(a) .gt. a) d = e
!
! WHERE block structure
 a(1:n) = sin (b(2:n+1))
 where (a(1:n) .gt. 0)
 c(1:n) = 2.*a(1:n)
 elsewhere
 c(1:n) = 2.*e(n:1:-1)
 d(1:n) = b(1:n)*d(1:n)
 endwhere

Translation:
 r1 = 0
 do j1 = 1, 100
 r1 = r1 + a(j1)
 enddo
 do j1 = 1, 100
 if (r1 .gt. a(j1)) d(j1) = e(j1)
 enddo
c
c WHERE block structure
 do j1 = 1, n
 a(j1) = sin(b(j1+1))
 if (a(j1) .gt. 0) then
 c(j1) = 2.*a(j1)
 else
 c(j1) = 2.*e(n+1-j1)
 d(j1) = b(j1)*d(j1)
 endif
 enddo

The example below shows transformational intrinsics used in scalar statements. The array calculation is
done in a loop and the value used in the scalar statement.

VAST/f90 User’s Guide 4. Array Syntax 15

!
! Need to 'migrate' dotproduct and sum
!
 if (dotproduct(a(1:l),b(1:l)) .gt. 0) then
 a = x
 elseif (sum(a).eq.x) then
 b = x
 endif

Translation:
 r2 = 0
 do j1 = 1, l
 r2 = r2 + a(j1)*b(j1)
 enddo
 r3 = 0
 do j1 = 1, 100
 r3 = r3 + a(j1)
 enddo
c
 if (r2 .gt. 0) then
 do j1 = 1, 100
 a(j1) = x
 enddo
 else if (r3 .eq. x) then
 do j1 = 1, 100
 b(j1) = x
 enddo
 endif

Finally, the example below shows the use of several keyword arguments on a transformational function.

 real, dimension(100,10,100):: out
 real, dimension(100,100):: a
!
! spread
!
 out = spread (a, dim=2, ncopies=10)

Translation:

 do j3 = 1, 100
 do j2 = 1, 10
 do j1 = 1, 100
 out(j1,j2,j3) = a(j1,j3)
 enddo
 enddo
 enddo

VAST/f90 User’s Guide 5. Fortran 90 Examples 16

5. Fortran 90 Examples

Cycle and Exit
EXIT requests termination of the current loop, CYCLE requests the next iteration.

 loopi: do i = 1, n
 loopj: do j = 1, m
 if (d(i,j).eq.0) exit loopi
 if (d(i,j).eq.1) cycle loopj
 a(i) = b(i) + d(i,j)
 end do loopj
 end do loopi

CASEs
Cases allow a more structured test than block IF constructs.

 IF (ARG1 /= 0) THEN
 SELECT CASE (ARG1)
 CASE(1)
 ARG2 = ARG3
 CASE(2)
 ARG2 = ARG1
 ARG3 = ARG1
 SELECT CASE(ARG3+ARG2)
 CASE(3)
 WRITE(6,*)' WRONG '
 CASE(4)
 WRITE(6,*)' RIGHT '
 END SELECT
 CASE(3)
 ARG3 = 3
 CASE DEFAULT
 ARG2 = 0
 END SELECT
 ENDIF

Derived Types
Derived types allow structuring of data. Nested derived types are allowed; derived type definitions can
include references to other derived types.

If you want derived types translated into VAX-compatible structure declarations, instead of lower-level
arrays, use the -xq switch.

VAST/f90 User’s Guide 5. Fortran 90 Examples 17

 type stats
 integer, dimension(5) :: rbi, hrs
 end type stats
!
 type team
 character*10 player
 integer number
 type (stats) statistics
 end type team
!
 type (team) roster(9)
!
 iloop: do i = 1, 9
 write(6,50) roster(i) % player
 if (roster(i) % player == ' ') cycle iloop
 do j = 1, 5
 write(6,60) roster(i) % statistics % rbi(j)
 write(6,70) roster(i) % statistics % hrs(j)
 end do
 end do iloop
!
50 format(2x, ' player: ',a10)
60 format(2x, ' rbis: ',i3)
70 format(2x, ' hrs: ',i2)
 end

ALLOCATE/DEALLOCATE
ALLOCATE/DEALLOCATE allow dynamic allocation of data items.

 subroutine alloc_demo
!
 real, dimension(80,90) :: a
 complex, dimension(80,90) :: b
!
 real, dimension(:,:), allocatable :: c
 complex, dimension(:,:), allocatable :: d
!
 allocate (c(20,90), d(20,90))
!
 c = cos (a(:20,:))
 d = b(:20,:)**2
 a(:20,:) = c*c - abs(d*d)
!
 deallocate (c, d)
!
 end

Automatic Arrays
Fortran 90 automatic arrays allow dummy argument, module, or common variables in the dimensions of
local arrays in subroutines and functions. These arrays are allocated by the compiler on entry to the
subprogram and deallocated on exit.

VAST/f90 User’s Guide 5. Fortran 90 Examples 18

 SUBROUTINE AUTO1 (B, N)
 REAL A(N), B(N) (A is an automatic array.)
 READ (9,*) A
 B = SQRT(A) + B
 WRITE (10,*) B
 RETURN
 END SUBROUTINE AUTO1

Intrinsic functions
VAST/f90 recognizes all Fortran 90 intrinsic functions and the keywords
allowed for each of them. A library (libvast90.a) is supplied for new intrinsic functions, and should
be linked into the final program (it is automatically linked in by the f90 driver).

MODULEs
Modules allow collections of global data without the storage association of COMMON blocks; modules
can also contain code related to the data.

 MODULE NAME
 REAL A(10), B, C(20,20)
 INTEGER :: I = 0
 INTEGER, PARAMETER :: J = 10
 CHARACTER*(J) STRING
 !
 CONTAINS

 SUBROUTINE ONE
 A = 1
 END SUBROUTINE ONE

 END MODULE NAME

Variables can be renamed on the USE statement to have a different name within the referencing
procedure.

USE NAME, ONLY: B
INTEGER A(400)
CALL ONE

Modules can reference other modules.

 MODULE JQ
 REAL JX, JY, JZ
 END MODULE
 MODULE KQ
 USE JQ, ONLY : KX => JX, KY => JY
 ! KX and KY are local names to module KQ
 REAL KZ ! KZ is local name to module KQ
 REAL JZ ! JZ is local name to module KQ
 END MODULE

VAST/f90 User’s Guide 5. Fortran 90 Examples 19

POINTERs
Here is an example of Fortran 90 pointers:

 real, pointer:: x, z
 real, target:: t
 !
 x => t ! pointer assignment
 x = x + 1.0
 z => x
 z = x + 2.0
 print *, z

Pointers can also be used with ALLOCATE/DEALLOCATE to allocate instances of derived types, for
instance.

Fortran 90 has the NULLIFY statement, which allows the pointer to be nullified. The pointer can also be
tested by the ASSOCIATED intrinsic function to see if it is currently attached.

Attribute declarations
Fortran 90 allows a new form of declarations in which multiple attributes can be specified for a given item
or items in a single declaration. In addition, the KIND attribute can be specified, which controls the data
length of the intrinsic type (real can be single or double or extended precision, for instance).

The KIND parameter is interpreted by VAST/f90 to be the number of bytes typically used to represent
such a quantity.

 INTEGER, INTENT(IN) :: ARG1
 INTEGER, INTENT(OUT) :: ARG2
 INTEGER, INTENT(INOUT) :: ARG3
 LOGICAL, DIMENSION(5,5) :: MASK1,MASK2
 CHARACTER (LEN=10) CHARACTER_STRING
 REAL, DIMENSION(-5:+5) :: X,Y,Z
 REAL (KIND(0.0D0)) A_DECLARATION
 REAL, PRIVATE :: XPRIV, YPRIV, ZPRIV

Initial values can be specified in the declarations in a new way as well, as seen below.

 COMPLEX :: CUBE_ROOT = (-0.5,0.866)
 INTEGER, PARAMETER :: SHORT = 2
 INTEGER (SHORT) K
 REAL, PARAMETER :: ONE = 1.0, YY = 4.1/3.0
 INTEGER, DIMENSION(3), PARAMETER :: ORDER=(/1,2,3/)

In addition, constants can be postfixed with a kind identifier (using an _), as in 1.0e6_8.

User-defined operators
With Fortran 90, the programmer can define new operators which can be used in place of function calls to
perform operations.

VAST/f90 User’s Guide 5. Fortran 90 Examples 20

In the example below, the user-defined operator .USER. stands for several function calls.

 INTERFACE OPERATOR(.USER.)
 INTEGER FUNCTION INT_USER(I,K)
 INTEGER, INTENT(IN) :: I,K
 END FUNCTION INT_USER

 REAL FUNCTION REAL_USER(R,S)
 REAL, INTENT(IN) :: R,S
 END FUNCTION REAL_USER
 END INTERFACE

 INTEGER I,K,L
 REAL Q, R, S
 LOGICAL L1, L2, L3
 L = K .USER. I
 Q = R .USER. S

Overloaded operators
With Fortran 90, you can "overload" existing operators such as +, -, *, etc. by defining different
operations for them for different data types. You can even add meaning to the assignment operator(=).

You cannot overload an operator which is already defined intrinsically, as in
integer + integer or logical.and.logical or real = integer.

In the example below, the .AND. operator is redefined for integer arguments.

 INTERFACE OPERATOR(.AND.)
 INTEGER FUNCTION INT_AND(I,K)
 INTEGER, INTENT(IN) :: I,K
 END FUNCTION INT_AND

 REAL FUNCTION REAL_AND(R,S)
 REAL, INTENT(IN) :: R,S
 END FUNCTION REAL_AND

 END INTERFACE

 INTEGER I,K,L
 REAL Q, R, S
 LOGICAL L1, L2, L3
 L = K .AND. I
 Q = R .AND. S
 L1 = L2 .AND. L3

The example below shows redefinition of the assignment operator.

 INTERFACE ASSIGNMENT (=)
 SUBROUTINE BIT_TO_NUMERIC(N,B)
 INTEGER, INTENT(OUT) :: N
 LOGICAL, INTENT(IN) :: B(:)
 END SUBROUTINE BIT_TO_NUMERIC

 SUBROUTINE NUMERIC_TO_BIT(B,N)

VAST/f90 User’s Guide 5. Fortran 90 Examples 21

 LOGICAL, INTENT(OUT) :: B
 INTEGER, INTENT(IN) :: N
 END SUBROUTINE NUMERIC_TO_BIT

 END INTERFACE

 LOGICAL LL
 INTEGER BB
 BB = LL
 LL = BB

Optional arguments
In order to use OPTIONAL arguments, you must have an interface block (either in line or from a USEd
MODULE or an INCLUDE). Optional arguments allow calls to be made with arguments missing. Each
optional argument must be declared OPTIONAL in the interface file and in the called routine. In the
called routine, the optional argument can be tested for with the PRESENT intrinsic function.

 SUBROUTINE UNO (Z)
 REAL Z
 INTERFACE
 SUBROUTINE DOS (EXTRA, TEMP, RESULT)
 REAL, INTENT(IN) :: EXTRA, TEMP
 OPTIONAL EXTRA
 REAL, INTENT(OUT) :: RESULT
 END SUBROUTINE DOS
 END INTERFACE
 CALL DOS (RESULT = Z, TEMP = 272.0)
 PRINT *, Z
 RETURN
 END SUBROUTINE UNO

Internal Procedures
Internal procedures are set off by the CONTAINS statement. Only one level of internal procedure is
allowed in the F90 Standard, so you cannot have internal procedures within internal procedures.
However, module procedures may have internal procedures.

 SUBROUTINE ONE
 N = 2
 CALL TWO
 N = 3
 CALL THREE
 !
 CONTAINS
 SUBROUTINE TWO
 PRINT *, N
 END SUBROUTINE TWO
 !
 SUBROUTINE THREE
 PRINT *, N
 END SUBROUTINE THREE
 !
 END SUBROUTINE ONE

VAST/f90 User’s Guide 5. Fortran 90 Examples 22

Recursive routines
With Fortran 90, routines can call themselves if they are declared as recursive.

 recursive integer function fact (j) &
 result (factx)
 if (j.eq.1 .or. j.eq.0) then
 factx = 1
 else
 factx = j * fact(j-1)
 endif
 end

I/O Extensions
This version of VAST/f90 does not translate the few I/O enhancements available in Fortran 90. The
extensions are:

• File positioning on OPEN
• Non-advancing I/O
• Additional edit descriptors

VAST/f90 issues diganostic messages whenever these unimplemented F90 features are encountered.

Other Fortran 90 features
Among other features in Fortran 90 are:

• The RESULT clause in Fortran 90 allows a different returnvalue variable for a
function.

• Unit name on END statement.
• New symbolic comparison operators <=, etc.

VAST/f90 User’s Guide Restrictions 23

Restrictions
Following is a list of restrictions and unimplemented features.

• Use of SEQUENCE with derived types, including:
• Equivalence of derived type with non-conformable derived types or other

variables.
• Sequence derived types arrays in COMMON cannot be accessed in all

possible ways.

type abc
 sequence
 integer, dimension(10) :: a,b
 end type
type(abc) da
common /.../ da(10)
...
da(j)%a(11) = ... [one might think this refers to da(j)%b(1)]

• TRANSFER intrinsic.

type uh_oh
 sequence
 real x, y
end type
type (uh_oh) bad(100)
complex c
c = TRANSFER (bad(50),c)

• Nonadvancing input. (Nonadvancing output is translated using the $ edit
descriptor, where available.)

• For some systems, list-directed I/O to internal file. (This is legal f90 but not f77;

some f77 compilers allow, some don't.)

• For some systems, character array pointers. (Depends on f77 compiler.)

• Non-f77-pointer mode (-y3): doesn't handle character pointers or mis-aligned data.

• Recursion is limited to a stack size, with default of 100. The stack size can be

increased or decreased with the -Zrecur=value option.

• NAMELIST I/O for derived types.

• DELIM= on OPEN statements.

• RECL= on OPEN statements for sequential access files.

• Use of array elements in specification (i.e. dimensioning) expressions.

VAST/f90 User’s Guide Restrictions 24

• Recursive ENTRYs.

• SIZE of expression involving implied DOs with certain kinds of variable upper

bounds.

subroutine sub(n)
isize = SIZE((/((i,i=1,j),j=1,n)/))

• Seven-dimensional array in recursive routine.

• Automatic character objects in recursive routines.

• DATA statement with vector subscript.

integer,parameter :: v(3)=(/3,2,1/)
integer a(3)
data a(v(:)) /1,2,3/
write(*,*) a

• Certain user character functions with dynamic length.

• Use of certain intrinsic functions in dimensioning expressions of dummy arrays and

character variables.

 subroutine sub(a,n,m)
 dimension a(max(n,m),100)

• Some arguments to INQUIRE(IOLENGTH=):
• dummy arguments
• implied DOs
• derived types
• expressions involving functions

• Function argument to recursive procedure, if the function can be different at
different levels of the recursion.

• DATAing of derived type variables in BLOCK DATAs; handled only if no

components are arrays or structures.

• Indirect recursion.

• For some systems, possibly a few of the new edit descriptors e.g. B, depending on

what extensions the f77 compiler allows.

VAST/f90 User’s Guide Index 25

Index
— A—

allocate/deallocate, 9, 18
array constructors, 12
array syntax, 10
array-valued functions, 9

— C—
c preprocessor, 7
conditional array operations, 11
conformability, 9, 10, 13
Connection Machine Fortran, 7

— D—
debugging, 7, 8
derived types, 24

— E—
elemental intrinsic functions, 11

— F—
f90 driver, 3
file extensions, 5
fixed format, 1, 4, 6
free format, 1, 4, 6
fusion, array syntax, 9, 13

— I—
I/O extensions, 23
indirect addressing, 12
INQUIRE(IOLENGTH=), 25
inquiry functions, 11
INTENT, 9
interface blocks, 5, 9, 22
internal procedures, 9, 22
intrinsic functions, 11, 19

— K—
KIND type parameter, 20

— M—
modules, 4, 5, 19

— N—
nonadvancing input, 24

— O—
option switches, 6
optional arguments, 22
overloaded operators, 21

— P—
performance of executable code, 9
POINTER extension of Fortran 77, 6, 7
pointers, 7, 9, 20, 24

— R—
recursion, 9, 23, 24
recursion stack size, 7

— S—
scalarization, 10
SEQUENCE, 24
superscalar optimization, 7

— T—
TRANSFER, 24
transformational intrinsic functions, 9, 11, 14

— U—
user-defined operators, 21

— V—
VAX structures, 17

— W—
WHERE, 11, 15

