000

Research Areas

000

- Mathematical Image Processing
 - Weak edge detection & segmentation
 - Semiconductor defect inspection
- Industrial CT Imaging
 X-ray CT artifact reduction (Beam hardening, Scattering)
- Algorithms for parallel computing
 - Domain decomposition methods for mathematical optimization
 - Isogeometric analysis: dynamic cloth simulation
 - Parallel deep neural networks

Weak Edge detection & Segmentation

Active contour for image segmentation

Weak Edge detection & Segmentation

Edge region from Geometric attraction-driven flow (GADF)

000

Weak Edge detection & Segmentation

Human teeth region segmentation with reflection removal

- Problems

Large edge regions forming closed regions make it difficult to extract teeth regions

OOO Semiconductor defect inspection **OOO**

Defects on semiconductor

OOO Semiconductor defect inspection **OOO**

Algorithm result

OOO Semiconductor defect inspection **OOO**

Machine learning result

OOO Artifact reduction in X-ray CT **OOO**

Beam hardening reduction

OOO Artifact reduction in X-ray CT **OOO**

Scattering reduction

OOO Domain Decomposition Methods for Mathematical Optimization

Mathematical optimization

• Partial differential equations

- Elliptic BVPs and Lax-Milgram theorem

$$\begin{cases} -\Delta u = f & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases} \iff \min_{u \in H_0^1(\Omega)} \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \int_{\Omega} f u \, dx \end{cases}$$

Computational mechanics

- Obstacle problem $\min E(w) = W$

- Image processing
 - Euler's elastica image inpainting

$$\min_{u \in V} \frac{\alpha}{2} \|Au - f\|_2^2 + \int_{\Omega} \left[a + b \left(\nabla \cdot \frac{\nabla u}{|\nabla u|} \right)^2 \right] |\nabla u| \, dx$$

(a) 80% missing pixels

(b) PSNR: 28.59

OOO Domain Decomposition Methods for Mathematical Optimization

Domain decomposition methods

- Parallel solvers suitable for distributed systems
- Local problems in subdomains are solved in parallel.

OOO Domain Decomposition Methods OOO for Mathematical Optimization

Challenging issues

• How to deal with nonsmooth/nonconvex terms in the energy functional?

$$\min_{u \in V} \frac{\alpha}{2} \|Au - f\|_2^2 + \int_{\Omega} \left[a + b \left(\nabla \cdot \frac{\nabla u}{|\nabla u|} \right)^2 \right] |\nabla u| \, dx$$

nonsmooth/nonconvex

- How to ensure the convergence of the algorithm mathematically?
- How to improve the performance of the algorithm?

OOO Dynamic cloth simulation

000

Tool: Isogeometric analysis (IGA)

* NURBS: CAD geometry basis = FE analysis basis

Cloth simulation : R. Bridson, S. Marino, R. Fedkiw (2003)

Kirchhoff-Love shell + IGA : J.Kiendl (2009)

IGA with trimmed surfaces : HJ Kim, YD Seo, SK Youn (2010)

Kirchhoff-Love shell + IGA + Cloth simulation : J. Lu, C. Zheng (2014)

Kirchhoff-Love element : displacement-based; no rotational dofs are needed. IGA : short modeling time, maintains higher order continuity.

OOO Algorithm of dynamic cloth simulation OOO

- 1. Predict positions of control points at t^{n+1}
- 2. Update contact test points and AABB tree structure of surfaces
- 3. Find contact candidates and calculate contact response
- 4. Projecting velocity of physical points to control points
- 5. Determine the position of control points at t^{n+1}
- 6. Calculate stiffness and decide velocity and acceleration by dynamic equilibrium

Contact test points and control points

AABB(Axis Aligned Bounding Box) tree

split function (yellow=1, blue=0)
in the parameter space

Results of cloth simulation

OO

1. Flag draping

3. Cutted cloth

5. Cloth draping over sphere

2. Trimmed flag draping

4. Cutting cloth with initial crack

6. Cloth draping over sphere with splitting function

OOO Parallel deep neural network **OOO**

Typical deep neural network (Feed forward neural network)

OOO Parallel deep neural network **OOO**

Problems

- As the depth of network becomes deeper, its training time becomes longer.
- How to accelerate DNN training using multiple GPUs?

Motivation

• Lions et al. (2001) – A "parareal" in time discretization of PDE's

Red : Coarse approximation of PDE computed in sequential manner but fast

OOO Parallel deep neural network **OOO**

Parareal neural network

